首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1443篇
  免费   215篇
  国内免费   372篇
  2024年   3篇
  2023年   54篇
  2022年   39篇
  2021年   51篇
  2020年   92篇
  2019年   91篇
  2018年   85篇
  2017年   83篇
  2016年   83篇
  2015年   81篇
  2014年   88篇
  2013年   115篇
  2012年   111篇
  2011年   119篇
  2010年   84篇
  2009年   76篇
  2008年   83篇
  2007年   70篇
  2006年   58篇
  2005年   47篇
  2004年   43篇
  2003年   44篇
  2002年   48篇
  2001年   32篇
  2000年   21篇
  1999年   24篇
  1998年   30篇
  1997年   19篇
  1996年   20篇
  1995年   22篇
  1994年   18篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   21篇
  1989年   10篇
  1988年   9篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   20篇
  1983年   10篇
  1982年   12篇
  1981年   8篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1973年   3篇
排序方式: 共有2030条查询结果,搜索用时 531 毫秒
21.
Fate of elemental sulfur in an intertidal sediment   总被引:2,自引:0,他引:2  
Abstract: Sediment from a tidal flat at Wedderwarden, near the mouth of the Weser estuary, northern Germany, was amended with elemental sulfur, and concentrations of metabolic end products were monitored. The production of both sulfate and sulfide was consistent with disproportionation as the most important fate of the added elemental sulfur. A population of bacteria conducting active elemental sulfur disproportionation was also enriched from the sediment. In the enrichments, containing both elemental sulfur and Fe oxides as a sulfide 'scrub', sulfide and sulfate were produced in a ratio of     , somewhat lower than the predicted ratio of     . The mismatch between predicted and observed production ratios is explained by the channelling of electrons into autotrophic or mixotrophic CO2 fixation rather than sulfide formation. The production of organic carbon, in the correct amount to explain the observed sulfide to sulfate production ratio, was verified by organic carbon analysis. Finally, rates of sulfate reduction were identical in the elemental sulfur amended sediment, and in control sediment with no added sulfur. Hence, the heterotrophic bacterial community was completely unaffected by an active metabolism conducting elemental sulfur disproportionation.  相似文献   
22.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   
23.
The effect of chilling on enzymes, substrates and products of sulfate reduction, gultathione synthesis and metabolism was studied in shoots and roots of maize (Zea mays L.) genotypes with different chilling sensitivity. At full expansion of the second leaf, chilling at 12 °C inhibited dry weight increase in shoots and roots compared to controls at 25 °C and induced an increase in adenosine 5-phosphosulfate sulfotransferase and -glutamylcysteine synthetase (EC 6.3.2.2) activity in the second leaf of all genotypes tested. Glutathione synthetase (EC 6.3.2.3) activity was about one order of magnitude higher than -glutamylcysteine synthetase activity, but remained unchanged during chilling except for one genotype. During chilling, cysteine and glutathione content of second leaves increased to significantly higher levels in the two most chilling-tolerant genotypes. Comparing the most tolerant and most sensitive genotype showed that chilling induced a greater incorporation of35S from [35S]sulfate into cysteine and glutathione in the chilling-tolerant than in the sensitive genotype. Chilling decreased the amount of35S-label incorporated into proteins in shoots of both genotypes, but had no effect on this incorporation in the roots. Glutathione reductase (EC 1.6.4.2) and nitrate reductase (EC 1.6.6.1) activity were constitutively higher in the chilling-tolerant genotypes, but showed no changes in most examined genotypes during 3 d at 12 °C. Our results indicate that in maize glutathione is involved in protection against chilling damage.Abbreviations APSSTase adenosine 5-phosphosulfate sulfotransferase - EC -glutamylcysteine - GR glutathione reductase - OSH glutathione - NR nitrate reductase We thank M. Suter for preparing [35S]adenosine 5-phosphosulfate, Dr. A. Fleming (both our Institute) for correcting the English and M. Soldati (Eschlikon, Switzerland) for his help with the plant material. This work was supported by COST 814 Crop development for the wet and cool regions of Europe.  相似文献   
24.
Ferredoxin-sulfite reductases (Fd-SiRs) [hydrogen-sulfide: ferredoxin oxidoreductase, EC 1.8.7.1] from leek leaves have been purified to homogeneity. The enzymes (SiR 1, SiR 2 and SiR 3) were separated by Mono Q chromatography. The collective molecular mass of the enzymes was estimated to be 65 kDa by gel filtration. In all three cases, subunit analysis by SDS-PAGE yielded a single protein band corresponding to a molecular mass of 64 kDa, indicating that the enzymes each exist as a monomer. In the oxidized forms, SiR 1, SiR 2 and SiR 3 all exhibited nearly identical absorption maxima at 279∼280, 389∼390, 588 and 714 nm, indicating that siroheme is involved in the catalysis of sulfite reduction. On enzymatic properties, SiR 1, SiR 2 and SiR 3 could only react with the physiological electron donor, feriedoxin. The enzymes exhibited different heat stabilities. The pH active curve obtained from SiR 2 was different from the others. Moreover, SiR 1 exhibited a lower Km value for ferredoxin than SiR 2. Although the N-terminal sequence was the same, the results of some enzymatic properties, amino acid analysis, and peptide mapping suggested the presence of the Fd-SiR isozymes in leek leaves.  相似文献   
25.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
26.
Abstract A dense population of the purple sulfur bacterium Amoebobacter purpureus in the chemocline of meromictic Mahoney Lake (British Columbia, Canada) underwent consistent changes in biomass over a two year study period. The integrated amount of bacteriochlorophyll reached maxima in August and declined markedly during early fall. Bacteriochlorophyll was only weakly correlated with the light intensity and water temperature in the chemocline. In the summer, bacterial photosynthesis was limited by sulfide availability. During this period the intracellular sulfur concentration of A. purpureus cells decreased. A minimum concentration was measured at the top of the bacterial layer in August, when specific photosynthetic rates of A. purpureus indicated that only 14% of the cells were photosynthetically active. With the exception of a time period between August and September, the specific growth rates calculated from CO2 fixation rates of A. purpureus were similar to growth rates calculated from actual biomass changes in the bacterial layer. Between August and September 86% of the A. purpureus biomass disappeared from the chemocline and were deposited on the littoral sediment of Mahoney Lake or degraded within the mixolimnion. This rise of cells to the lake surface was not mediated by an increase in the specific gas vesicle content which remained constant between April and November. The upwelling phenomenon was related to the low sulfur content of A. purpureus cells and a low resistance of surface water layers against vertical mixing by wind.  相似文献   
27.
The sodium ion gradient and the membrane potential were found to be the driving forces of sulfate accumulation in the marine sulfate reducer Desulfovibrio salexigens. The protonmotive force of –158 mV, determined by means of radiolabelled membrane-permeant probes, consisted of a membrane potential of –140 mV and a pH gradient (inside alkaline) of 0.3 at neutral pHout. The sodium ion gradient, as measured with silicone oil centrifugation and atomic absorption spectroscopy, was eightfold ([Na+]out/[Na+]in) at an external Na+ concentration of 320 mM. The resulting sodium ionmotive force was –194 mV and enabled D. salexigens to accumulate sulfate 20000-fold at low external sulfate concentrations (<0.1 M). Under these conditions high sulfate accumulation occurred electrogenically in symport with three sodium ions (assuming equilibrium with the sodium ion-motive force). With increasing external sulfate concentrations sulfate accumulation decreased sharply, and a second, low-accumulating system symported sulfate electroneutrally with two sodium ions. The sodium-ion gradient was built up by electrogenic Na+/H+ antiport. This was demonstrated by (i) measuring proton translocation upon sodium ion pulses, (ii) studying uptake of sodium salts in the presence or absence of the electrical membrane potential, and (iii) the inhibitory effect of the Na+/H+ antiport inhibitor propylbenzilylcholin-mustard HCl (PrBCM). With resting cells ATP synthesis was found after proton pulses (changing the pH by three units), but neither after pulses of 500 mM sodium ions, nor in the presence of the uncoupler tetrachorosalicylanilide (TCS). It is concluded that the energy metabolism of the marine strain D. salexigens is based primarily on the protonmotive force and a protontranslocating ATPase.Abbreviations MOPS morpholinopropanesulfonic acid - TCS tetrachlorosalicylanilide - PrBCM propylbenzilylcholin-mustard HCl - Tris tris(hydroxymethyl)aminomethane - TPP+ bromide tetraphenylphosphonium bromide  相似文献   
28.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   
29.
The growth and morphology of Scots pine needles were studied in a long-term acid rain experiment in the far north of Finnish Lapland. Pine trees 5 m tall of age 50–70 years were exposed, by spraying the foliage and soil from a height of 2 m, to either clean water (IC) or acidified water over the period 1985–1992, the acidification site being divided into sub-areas in which the precipitation contained two levels of either sulphuric (Sm, Sh) or nitric (Nm, Nh) acid, or both (SNm, SNh). The treatments with medium and high sulphate-S over eight consecutive years yielded a total sulphur deposition of 3·4 and 17·1 gm−2, respectively, and those with medium and high nitrate-N a total nitrogen deposition of 1·1 and 5·9 g m−2. Needles were collected for light and electron microscopy, growth measurements and morphometry. Growth in branch height had decreased by about 40% after 6 years of SNm or SNh treatment, and needle growth by 15% in the SNh trees as compared with the irrigated control trees (IC), although decreases were statistically significant only with respect to the non-irrigated control trees (DC). Growth of branches and needles was slightly better in the Nh treatment than in the IC group. The areas of the whole needle, the mesophyll and the phloem decreased in response to SNh treatment as compared with IC or DC, and a statistically significant decrease of about 30–40% was seen in the area of the xylem in comparison with DC. Cellular damage was observed following the acid treatments, especially with a high acid load. The damage was manifested in collapse of the cellular compartments, increases in lipid accumulations and swelling or disorganization of the protoplast. Increased vacuolization of the cytoplasm, plasmalemma irregularities and chilling-type damage to the mitochondria were also observed.  相似文献   
30.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号